Fiber photometry for monitoring cerebral oxygen saturation in freely-moving rodents
نویسندگان
چکیده
منابع مشابه
Virtual Reality system for freely-moving rodents
Spatial navigation, active sensing, and most cognitive functions rely on a tight link between motor output and sensory input. Virtual reality (VR) systems simulate the sensorimotor loop, allowing flexible manipulation of enriched sensory input. Conventional rodent VR systems provide 3D visual cues linked to restrained locomotion on a treadmill, leading to a mismatch between visual and most othe...
متن کاملA new device for the simultaneous recording of cerebral, cardiac, and muscular electrical activity in freely moving rodents.
We present a new technique for the simultaneous capture of bioelectrical time signals from the brain and peripheral organs of freely moving rodents. The recording system integrates all systemic signals into an electrical interface board that is mounted on an animal's head for an extended period. The interface board accommodates up to 48 channels, enabling us to analyze neuronal activity pattern...
متن کاملValidation of Oxygen Saturation Monitoring In
www.ajcconline.org • BACKGROUND Pulse oximetry is commonly used to monitor oxygenation in neonates, but cannot detect variations in hemoglobin. Venous and arterial oxygen saturations are rarely monitored. Few data are available to validate measurements of oxygen saturation in neonates (venous, arterial, or pulse oximetric). • PURPOSE To validate oxygen saturation displayed on clinical monitors ...
متن کاملIn Vivo Monitoring of Circadian Timing in Freely Moving Mice
In mammals, the principal circadian pacemaker driving daily physiology and behavioral rhythms is located in the suprachiasmatic nucleus (SCN) in the anterior hypothalamus. The neural output of SCN is essential for the circadian regulation of behavioral activity. Although remarkable progress has been made in revealing the molecular basis of circadian rhythm generation within the SCN, the output ...
متن کاملBioluminescence Monitoring of Neuronal Activity in Freely Moving Zebrafish Larvae
The proof of concept for bioluminescence monitoring of neural activity in zebrafish with the genetically encoded calcium indicator GFP-aequorin has been previously described (Naumann et al., 2010) but challenges remain. First, bioluminescence signals originating from a single muscle fiber can constitute a major pitfall. Second, bioluminescence signals emanating from neurons only are very small....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Optics Express
سال: 2020
ISSN: 2156-7085,2156-7085
DOI: 10.1364/boe.393295